Monday, May 5, 2014

The human machine: replacing damaged components


The previous post in this series can be found here.


The major theme of my 'human machine' series of posts has been that we are, as the name suggests, machines; explicable in basic mechanical terms. Sure, we are incredibly sophisticated biological machines, but machines nonetheless. So, like any machine, there is theoretically nothing stopping us from being able to play about with our fundamental components to suit our own ends. This is the oft feared spectre of 'genetic modification' that has been trotted out in countless works of science fiction, inexorably linked to concepts of eugenics and Frankenstein-style abominations. Clearly genetic modification of both humans and other organisms is closely tied to issues of ethics, and biosafety, and must obviously continue to be thoroughly debated and assessed at all stages, but in principle there is no mechanistic difference between human-driven genetic modification and the mutations that arise spontaneously in nature. The benefit of human-driven modification, however, is that it has foresight and purpose, unlike the randomness of nature. As long as that purpose is for a common good and is morally defensible, then in my eyes such intervention is a good thing.

One fairly obvious beneficial outcome of genetic modification is in the curing of various genetic disorders. Many human diseases are the result of defective genes that can manifest symptoms at varying times of life. Some genetic disorders are the result of mutations that cause a defect in a product protein, others are the complete loss of a gene, and some are caused by abnormal levels of gene activity - either too much or too little.  A potential means to cure such disorders is to correct the problematic gene within all of the affected tissue. The most efficient means to do that would be to correct it very early in development, since if you corrected it in the initial embryo then it would be retained in all of the cells that subsequently develop from that embryo. This is currently way beyond our technical limitations for several reasons. Firstly, we don't routinely screen embryos for genetic abnormalities and so don't know which ones might need treatment. Secondly, the margin for error in this kind of gene therapy is incredibly narrow as you have to ensure that every single cell that the person has for the rest of their life will not be adversely affected by what you do to the embryonic cells in this early stage - we're not there yet. Thirdly, our genetic technology is not yet sophisticated enough to allow us to remove a damaged gene and replace it with a healthy one in an already growing embryo - the best we can do it stick in the healthy gene alongside the defective one and hope it does the job. There is certainly no fundamental reason why our technology could not one day reach the stage where this kind of procedure is feasible, but we are a long way off yet.

So, for the time being what can we do? Well instead of treating the body at the embryonic stage, the next best approach is to treat specifically the affected cells later on in life.  This involves identifying the problematic gene and then using a delivery method to insert the correct gene into whatever tissues manifest the disease, preferably permanently. This is broadly known as gene therapy, and is one of the most promising current fields of 'personalised' medicine.